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Permchecker: A Toolchain for Debugging Memory
Managers with Typestate

KARL CRONBURG and SAMUEL Z. GUYER∗, Tufts University, USA

Dynamic memory managers are a crucial component of almost every modern software system. In addition
to implementing efficient allocation and reclamation, memory managers provide the essential abstraction
of memory as distinct objects, which underpins the properties of memory safety and type safety. Bugs in
memory managers, while not common, are extremely hard to diagnose and fix. One reason is that their
implementations often involve tricky pointer calculations, raw memory manipulation, and complex memory
state invariants. While these properties are often documented, they are not specified in any precise, machine-
checkable form. A second reason is that memory manager bugs can break the client application in bizarre
ways that do not immediately implicate the memory manager at all. A third reason is that existing tools
for debugging memory errors, such as Memcheck, cannot help because they rely on correct allocation and
deallocation information to work.

In this paper we present Permchecker, a tool designed specifically to detect and diagnose bugs in memory
managers. The key idea in Permchecker is to make the expected structure of the heap explicit by associating
typestates with each piece of memory. Typestate captures elements of both type (e.g., page, block, or cell) and
state (e.g., allocated, free, or forwarded). Memory manager developers annotate their implementation with
information about the expected typestates of memory and how heap operations change those typestates.
At runtime, our system tracks the typestates and ensures that each memory access is consistent with the
expected typestates. This technique detects errors quickly, before they corrupt the application or the memory
manager itself, and it often provides accurate information about the reason for the error.

The implementation of Permchecker uses a combination of compile-time annotation and instrumentation,
and dynamic binary instrumentation (DBI). Because the overhead of DBI is fairly high, Permchecker is suit-
able for a testing and debugging setting and not for deployment. It works on awide variety of existing systems,
including explicit malloc/free memorymanagers and garbage collectors, such as those found in JikesRVM and
OpenJDK. Since bugs in these systems are not numerous, we developed a testing methodology in which we
automatically inject bugs into the code using bug patterns derived from real bugs. This technique allows us
to test Permchecker on hundreds or thousands of buggy variants of the code. We find that Permchecker ef-
fectively detects and localizes errors in the vast majority of cases; without it, these bugs result in strange,
incorrect behaviors usually long after the actual error occurs.

Additional Key Words and Phrases: typestate, debugging, language implementation, memory management,
memory layout, compiler extension

1 INTRODUCTION
In December of 2018, a bug was reported to Oracle’s OpenJDK [Oracle 2006] development team.
In this bug, the Java Virtual Machine (JVM) would deadlock on an object monitor, even though no
threads held exclusive access to the monitor. This failure only occurred when the jemalloc [Evans
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2 Karl Cronburg and Samuel Z. Guyer

2006] was used in place of the default malloc/free implementation, leading the developers to sus-
pect a memory safety error. However, the failure was difficult to reproduce and caused knock-on
effects leading to incomplete and misleading stack traces. After ten months of on-again off-again
investigation, the team had all but given up, with one comment added to the bug report as follows:

I've exhausted what I can do to investigate this. All appearances
are that it is a jemalloc issue related to the thread caching.
Closing as "External".

Please reopen if further information comes to light.

David Holmes added a comment - 2019-10-09 19:11

In the Fall of 2019, this developer finally figured it out using carefully hand-coded instrumen-
tation of object monitors. An address mix-up was causing the monitor in question to be owned
by two different threads. After almost a year from the initial report, the bug was found and fixed:
an address comparison that should have been a greater-than was using a greater-than-or-equal-to
operation instead.

This kind of bug is among the most difficult and time-consuming to diagnose because it involves
the very subsystem that we ordinarily rely on to enforcememory safety: the memory manager, and
an object model describing how objects and their metadata are laid out in memory. For this reason,
many of the existing tools and techniques for tackling memory errors are ineffective or cannot be
easily applied to code in the memory manager. At the same time, the programming of such code
is very challenging and error prone, involving sensitive pointer manipulations, implicit address
invariants, and complex memory layouts accessed by disparate subsystems. We normally expect
runtime system code to support a diverse array of hardware and software environments, where
concurrency is the norm and performance is at a premium. Although the number of memory man-
ager implementations is relatively small, every single program that dynamically allocates memory
relies on one to run correctly.

In this paper we present Permchecker, a toolchain designed to aid in the debugging of memory
managers, including explicit allocators and garbage collectors. Permchecker’s design is based on
the observation that all memory managers perform the same basic task: they take a large array
of bytes and partition it into chunks, giving structure to memory and managing the lifecycle of
objects for the client application. The specific partitioning strategy of a memory manager gives
each chunk of memory meaning, much the way types give meaning to data in a programming
language. An error in a memory layout looks much like a type safety error: a chunk of memory
designated for one purpose is accessed improperly or used for another purpose.

Memory chunk types, however, have important differences from traditional types. For one,
chunk types often cannot be explicitly defined in the type system of the implementation language.
Instead, the role of a chunk is implied by its relative spatial location in memory. For example, a
generational garbage collector might classify a page of memory as part of the nursery because
it resides in the nursery’s reserved address range. Similarly, the argument to a manual free()
implementation is an untyped pointer, and this function might need to inspect the pointer value
or metadata stored elsewhere in memory to determine, e.g., that the chunk belongs on a free list.
Traditional types alone are a poor fit for these for these situations because the correct type infor-
mation is not readily available from either type declarations or the operations performed.
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Permchecker: A Toolchain for Debugging Memory Managers with Typestate 3

Another difference from traditional types is that a chunk of memory changes type during the
normal course of partitioning, allocation, deallocation, and coalescing. For example, when a page
is divided up into cells, all subsequent code must access memory in the page as cells, even though
they reside within a page. This behavior is different from dynamic typing, where a single variable
can refer to values of different types, but the values themselves do not change type. The most
closely related type feature is C/C++ union, which allows a single chunk of memory to be viewed
as different types, but provides no mechanism to check and maintain type safety.

The key idea in Permchecker is to use typestates [Strom and Yemini 1986] to specify and track
the structure of memory as it changes, and check that the memory manager accesses and updates
this structure according to the expected specification (the “permissions”). The system consists of
two main parts: (1) an API that developers can use to annotate memory management code with
the expected types and state transitions in each operation (e.g., alloc, free, scan, collect, etc), and
(2) a runtime system that associates typestates with real memory (a shadow map) and uses binary
instrumentation to check that at every memory access the permissions associated with the code
match the typestate of the memory. We show that this technique detects memory errors as soon
as they happen, rather than when they manifest, which can be much later in a program execution.

The term typestate, as we apply it to a dynamic setting, is slightly different from its static coun-
terpart. In a static analysis setting, a typestate requires three components. First, types describe the
shape of data and the allowable operations over a variable. Second, states and accompanying state
transitions narrow the allowable operations over the variable. Finally, a semilattice with a meet
function defined over it approximates the true state of the variable at each static program point
by defining how to combine state information at control-flow merge points.

With Permchecker the first two components of typestate are defined, but the third is
not needed. First, types describe the in-memory layout of a data structure and the allowable
operations over a memory location therein. Second, states and accompanying state transitions
restrict the memory location to being accessed by specific program instructions. Finally, program
annotations define code permissions which exactly track state information meaning no semilattice
approximation is necessary.

A goal of this work is to build tools that work with existing memory managers across a range
of platforms. Our approach is designed around this use case. We assume that developers cannot
reimplement their systems in a new language or using a new methodology. Therefore, our API is
generated from a separate specification and added to the memory manager code. To avoid high up-
front costs, developers can introduce these annotations gradually, startingwith a simple, but coarse
model of memory, and increasing the precision as necessary with more fine-grained annotations.

Contributions. In this work, we apply typestate to a dynamic setting for the purpose of describing
how a memory manager partitions and recycles memory. The goal of Permchecker is to provide a
way for the developer of a runtime system to specify and check the lifecycles of memory typestates
across all abstraction levels of the system. A relatively simple tracking API allows the developer
to associate a typestate with a chunk of memory. A permissions API and annotations can then be
used to declare access permissions.This formulation of dynamic typestate is a natural extension of
the static typestate program analysis techniques developed in the 1980’s [Strom and Yemini 1986].
The contributions presented in this paper are as follows:

• A technique for specifying the hierarchical layout and decomposition of a memory man-
ager’s memory.

• A tool for generating an API from a layout specification. The API tracks structures of mem-
ory via explicit typestates transitions.
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4 Karl Cronburg and Samuel Z. Guyer

• Compile-time support, implemented in the Clang C/C++ compiler, for automatically trans-
lating common typestate transitions from function annotations to API calls.

• A Pin-based dynamic binary instrumentation (DBI) tool that tracks the typestate of every
byte of memory and ensures that memory accesses from the anywhere in the program
(both the memory manager and the application) respect the expected structure.

• An experimental methodology that includes both real bugs and injected bugs. Since bugs
in memory managers are relatively uncommon, we use a technique in which we extract
the essence of a real bug as a bug pattern, and then run hundreds of experiments in which
similar defects are introduced in different places in the code.

2 DESIGN OVERVIEW
Permchecker takes a step towards verifiable memorymanagement by providing a way to explicitly
annotate the structure and state of a heap, and then check that the implementation of the mem-
ory manager properly maintains and respects that structure. Our design is inspired by Valgrind’s
Memcheck tool, but generalized to an arbitrarily hierarchical memory manager. At the applica-
tion level, memory is either allocated or not, and Memcheck checks that application code only ac-
cesses allocated memory. Inside a memory manager, there are often numerous intermediate states
of memory apart from allocated and free. Memory is obtained from the operating system in large
chunks and carved into successively smaller pieces. Each partitioning is typically managed by an
intermediate allocator which services requests from higher-level allocators and requests memory
from lower-level allocators. Additionally, multiple independent allocators often service requests
for specific categories of values, contributing further to the rich landscape of memory subsystems
that compose a modern runtime system.

Allocation Policies & Alternative Hierarchies.As an example, a generational garbage collector might
contain three independent allocators: a bump pointer for the nursery, a free-list allocator for the
mature space, and a reference-counted allocator and collector for large objects. For instance, the
free-list allocator has at least two allocation levels. First, a low-level block allocator carves off a
large chunk of the virtual address space from the operating system. Second, the free-list’s cell
allocator extracts from the large chunk an object-sized cell and doles it out to the application. This
process is further complicated by a myriad of allocation and collection policies at both the block
and cell level. As a result a fully automated technique, like Memcheck, is infeasible in the absence
of definitive memory type and allocator state information.

Typestate Permissions. It is crucial for runtime system code to only ever access the kind of memory
it is supposed to. For example, a free-list allocator should not access memory currently allocated
by the nursery’s bump pointer allocator. Given explicit expectations of these two subsystems, we
can begin to verify that memory is managed safely by ruling out cross-contamination.

With Permchecker, each location in memory is assigned a type, or more precisely a typestate
since the type can change over the course of execution. After assignment, code which accesses
the location must have permission to access the assigned typestate. An error is thus reported
as soon as a memory access occurs over a typestate of memory the code was not expecting to
access. The resulting error message is a detailed report of the impermissible memory access, and is
described in the terminology of the particular system. For example, a garbage collector’s nursery
allocator might incorrectly attempt to allocate memory recently added to the mature space’s free-
list. The error reported by Permchecker would be something like the following: “Observed type
FREELIST_CELL expecting type NURSERY_CELL.”
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Permchecker: A Toolchain for Debugging Memory Managers with Typestate 5

Incrementality. A primary goal of this work is to provide practical debugging tools and techniques
that can help diagnose bugs in existing systems. To this end, Permchecker is built as a lightweight
C/C++ API and accompanying heavyweight instrumentation tool runnable on virtually any mem-
ory manager. We present our use of this tool to debug OpenJDK’s Hotspot VM, Oracle’s open-
source version of their industrial-strength JVM. Not discussed experimentally in this paper is our
use of Permchecker to debug memory bugs found in other manual and automatic memory man-
agers. These include dlmalloc [Lea 1991], Doug Lea’s implementation of the standard malloc/free
interface, and the Jikes Research Virtual Machine [IBM 2005], another implementation of a JVM.
Without the trial-and-error process of studying this multitude of diverse systems, we would not
have landed upon an incremental usage of Permchecker where the programmer starts out with a
simple model of their heap, adding more and more typestate information over time.

3 BACKGROUND & RELATEDWORK
Memory safety is not a new concern. Over the years, a wide array of systems, tools, techniques, and
languages have been developed to help diagnose and prevent these potentially catastrophic errors.
One of the most successful and widely deployed techniques is automatic memory management
(garbage collection) which, together with runtime bounds checking, has practically eliminated the
most common coding errors that lead to memory corruption. But a nagging problem has remained:
how to find and fix bugs in the memorymanager itself. In this section, we discuss how this concern
is different from ordinary memory safety and why that makes it such a hard problem to deal with.

Debugging an Abstraction. Memory safety ensures that a memory access respects the boundaries
and lifetimes of objects and values in memory. At the level of raw memory (virtual addresses),
however, there are no boundaries and lifetimes; memory is just one giant array of bytes. These ab-
stractions are created and maintained by the memory manager, and unfortunately existing mem-
ory safety tools require this information in order to perform their checks. Valgrind [Nethercote
and Seward 2007], for example, can perform highly detailed memory safety checks on an applica-
tion, but it must be able to intercept (shim) calls to malloc and free in order to know when objects
are allocated and freed, and their bounds. When the memory manager itself has an error, however,
the memory checker becomes unreliable because it is using faulty information.

Missing Information. A memory manager bug is similar in spirit to a compiler bug: a rare “bug
of last resort” that is often identified only after extensive application-level debugging fails. In a
compiler bug, however, it is possible to inspect the assembly code output and verify that it correctly
implements the input source code (or not, as the casemay be). No such opportunity exists for errors
in the heap layout of amemorymanager.Most implementations do not include a formal description
of what correct states of the heap can look like. Therefore, we cannot merely inspect the resulting
contents of memory to determine if the memory manager has functioned correctly. For this reason,
a preprocessing tool in the Permchecker toolchain is inspired by LoCal [Vollmer et al. 2019] and
Floorplan [Cronburg and Guyer 2019], both of which are memory layout description languages
intended to provide special purpose heap access abstractions.

GC Debugging. Recent research targeting, among others, the multicore OCaml garbage collector
(GC) tackles the issue of unreliability in debugging tools for concurrent GC bugs. While memory
corruption is one source of unreliability in producing accurate error reports, another source of un-
reliability is the non-deterministic nature of many GCs. The RR [O’Callahan et al. 2017] debugger,
an extension to the GNU Debugger, alleviates nondeterminism while debugging. It does this by
recording and replaying program executions with relatively low overhead. The developers of RR
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6 Karl Cronburg and Samuel Z. Guyer

report that a principle motivation in developing it the way they did was “to improve the [expe-
rience] of [using] user-space record-and-replay while being less invasive than [e.g.] a full kernel
implementation”.These principles are shared by our approach to debugging garbage collectors.We
studied the practicality of adding small amounts of GC instrumentation for the purpose of reliably
reporting the violation of unobservable program invariants.

Static Solutions. Typestate finds numerous applications in both static analysis [Strom and Yem-
ini 1986] and static programming language features. For instance typestate in Rust [Weiss et al.
2019] derives from the language’s support for linear and affine types at compile-time, by enforcing
memory movement semantics statically in the context of a single variable. In contrast typestates
supported by Permchecker derive from the toolchain’s tracking of shadow memory at run time,
and enforcing memory access permissions dynamically in the context of an individual memory
location. The key difference here is that a single variable cannot be aliased by constructing it from
dynamic calculations, whereas a memory location must be aliasable via pointer operations in the
implementation of a memory manager.

Smart Pointers.Much like linear and affine types for enforcing usage constraints at compile-time on
variables, a smart pointer can check or enforce certain usage properties at run time on a variable as
well. One canonical example is a reference-counted smart pointer for distinguishing live allocated
objects from garbage. Such a reference counting scheme tracks the number of known pointers
stored in memory in places where they can, in the future, be loaded into variables (registers, at
run time) and referenced as such with a load or store instruction. This ability to access memory
indicates the memory remains allocated. A memory manager however not only manages allocated
memory: it also manages and requires access to any and all freed memory. Thus, without reach-
ability as a proxy for whether or not a memory location should be accessible, reference-counted
smart pointers alone cannot sufficiently check memory management code for safety.

Compiler Extensions. A compiler extension known as AddressSanitizer [Serebryany et al. 2012],
like Valgrind’s Memcheck, is able to detect out-of-bounds accesses to memory locations with
shadow memory. Unlike Memcheck, it relies on unaddressable “poisoned” padding to be added
to heap, stack, and global chunks of memory. As a result this mechanism is able to detect a subset
of inter-chunk corruptions, but not any intra-chunk corruptions. Detecting intra-chunk corrup-
tion requires a richer allocation distinction than just allocated/free, and fewer assumptions about
where memory comes from. The key problem we face, in the domain of memory management, is
that multiple memory allocation schemes share the same single virtual address space.

Bug Injection Methodologies. The process of generating a corpora of bugs is often motivated by a
specific kind ofmistake a programmer canmake: off-by-one errors, operator selection defects [Rice
et al. 2017], bounds-checking mistakes [Dolan-Gavitt et al. 2016], and more. These mistakes can
be constructed by source code mutation [Roy et al. 2018]. What this bug creation technique does
not take into account is the modeling of undesirable algorithmic operations of the system having
bugs injected into it.

In a memory manager, we know of a relatively fixed and small set of algorithmic operations
that are bad: use-after-free, overlapping allocations, among others. In contrast, the categories of
linguistic (syntactic and semantic) mistakes a programmer can make are limited by which symbols
the programmer types and the compiler accepts. The key difference is that injecting invalid algo-
rithmic operations into a system realistically stresses a broad category of resulting downstream
behaviors of the system, while injecting linguistic bugs does not. Injecting a linguistic bug requires
both a far larger enumeration of sources of linguistic mistakes and clever tactics for eliminating
repetitive bugs, such as ones which always crash the program.
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1 <id> := [A-Z][_a-zA-Z0-9]*
2 <ts> := <id> // A typestate is a unique identifier
3 <prim> := bytes | words
4 <stmt> := <ts> -> <ts>
5 | <ts> -> seq { <exp> , ... } // One or more ','-sep exps
6 | <ts> -> union { <exp> | ... } // One or more '|'-sep exps
7 | # <exp> // Prefix notation for "zero-or-more" reps
8 <exp> := <ts> | <stmt> | [0-9]+ <prim>
9 <spec> := <stmt>+

Fig. 1. Syntax for describing the layout of memory in terms of typestates. A layout <spec> is one or more
layout statements describing a sequence of memory (seq), alternative views of the same memory (union),
some amount of primitive memory (<prim>), or repetitions of a structure with (#).

4 TOOLCHAIN OVERVIEW BY EXAMPLE
In this section we present in modest detail the mechanisms by which a memory management

programmer and the Permchecker toolchain orchestrate the checking of typestates in a memory
manager. In doing so we illuminate the role of the compiler, VM annotations, and dynamic instru-
mentation in tracking and checking the typestates.The idea here is that each toolchain component
is small or simple in nature and designed to serve a single purpose effectively: manage and check
uniquely identifiable typestates over a process’ address space. To start, the following are some
important high-level definitions clarifying the scope of typestate in this work:

Typestate. This is a uniquely identifiable state of a memory location, coupled with the valid value
types that can reside in that location. A mutable typestate on a heap memory location for the
duration of a program’s execution is similar to a dynamic type on a local variable for the duration
of a function’s execution. The key difference is that a type typically restricts a function call-site
to referring to a specific set of variables, whereas a typestate restricts an assembly instruction to
accessing a specific set of memory locations.

Set of typestates.This is a collection of typestates, each of which can be accessed by the same piece
of polymorphic code. Such a collection associated with a specific piece of code permits access to
memory locations containing the same types of values, without unnecessarily restricting the code
to a highly particular typestate.

4.1 Allocation Hierarchies
In Figure 1 we define a minimal syntax for defining typestates of memory. The idea is that types-
tates are interrelated via the hierarchy by which they are allocated. For example in Hotspot, a page
resource allocates for regions, the region manager allocates for objects, and object management
code allocates object headers and various primitive application field types. To broadly describe
this hierarchy with the syntax, we might write the following:

1 Pages -> # union { Region | ... }
2 Region -> seq { # Object, # words }
3 Object -> seq { Header, # Field }
4 Header -> union { 2 words | Array -> 3 words }
5 Field -> # words

(L1)
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Code L1 defines 6 typestates: Pages, Region, Object, Header, Array, and Field. The idea is
that each and every memory location in use by the memory manager is in one of these typestates
at some point during runtime (or implicitly in an UNMAPPED typestate). For example, an allocated
heap region with a single 10-word object allocated into it involves three typestates. The first 2
words of the region are in the Header typestate, the next 8 words are Field, and the remaining
memory is all Region. In this example, the first # repetition in the Region statement effectively
takes on a value of 1 (a single object) and the second # repetition consumes the remaining words in
a (fixed-size) region. Also note that the ellipsis on the first line is a placeholder for other allocation
schemes that we do not discuss here.

The repetition (#) operator means some number of chunks of memory. Intuitively, this operator
flood fills the surrounding space by repeating in memory zero or more times the layout expression
it is applied to. Formally, the semantics of repetition are equivalent to those of the Kleene star
regular expression operator. For example, the (#) operator can describe gaps in the address space
of statically unknown size inbetween known structures. This application enables the description
of alignment padding at the beginning of an object, dead objects fragmented among live allocated
objects, and more.

4.2 Layout Description
In addition to defining a hierarchy, we need to be able to declare what the intended contents (val-
ues) of a memory layout are. In a memory manager, navigating a memory layout to obtain values
in memory is performed by pointer manipulations and offset calculations. These calculations ulti-
mately lead us to the underlying contents of memory. To declare the underlying contents of objects
from Code L1, we might for example write the following:

1 Object -> union {
2 Free -> # words
3 | Alloc -> seq { Header, # words } }
4 Header -> union {
5 Arr -> seq { MarkWord, KlassPtr, Len, Gap } // 3 words
6 | Cls -> seq { MarkWord, KlassPtr } } // 2 words

(L2)

In this Code L2, we define the typestates of a Hotspot Object and its Header. An object is either
in the Free typestate, or it is in the Alloc typestate and therefore contains a header and some
number of payload words of memory which we leave unrefined. The Header of such an object is
either 3 or 2 words in size. This depends on whether or not the object is an array with an array
length (Len) field. The Arr is this array type, whereas the Cls is an ordinary Java class object. A
KlassPtr is a reference to C++ metadata about a Java class. The Gap field is unused alignment
padding. Lastly, a MarkWord is a bit-field containing runtime metadata such as the object’s hash,
locking bits, number of object promotions or evacuations, and amark bit. In some cases these fields
overlap and change depending on the state of the object, especially in relation to per-thread object
locking. Apart from the mark bit and promotion count (“age”), no space is reserved in the mark
word for the GC. Assuming a 64-bit architecture, the header fields take on the following sizes:

1 MarkWord -> 1 words
2 KlassPtr -> 1 words
3 Len -> 4 bytes
4 Gap -> 4 bytes

(L3)
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Code L2 and L3 serve two purposes: (1) to define hierarchical relationships among named types-
tates, and (2) to associate sizes with them. With (1), the idea is that this code models where a piece
of memory comes from in the context of a hierarchy of typestate mutators. One such typestate
mutator is the code in Hotspot which stores a garbage object onto a free-list. This mutator code
implicitly changes the typestate of the underlying memory from allocated to free. However, this
is in some sense a lazy operation. Perhaps we could deem an object to be free as soon as a Java-
level pointer update causes the object to no longer be accessible by the Java heap. While more
precise, this definition is untrackable without invasive changes to the runtime system. The point
is it is not always clear, based on a cursory analysis of the code, where a typestate mutation should
occur. This state of affairs reflects our dynamic formulation of typestate for tracking memory as
implemented, with minimal disruption to that implementation.

4.3 Typestate Identifiers: Code Generation
In this section we discuss how we annotated the Hotspot VM with typestate layout annotations
generated from a version of Code L1. The idea is that we can generate much of the repetitive boil-
erplate necessary to track typestates at run time. This boilerplate includes a consistent centralized
naming scheme for managing hierarchies of allocable typestates.

First, a preprocessing tool processes a layout description, generating a series of named types-
tates, among other code snippets to reduce boilerplate during annotation of a memory managemer.
From Code L2, we get out a series of typestates defined as follows:

1 #define PCK_Object ((TypeState)1)
2 #define PCK_Object_Free ((TypeState)2)
3 #define PCK_Object_Alloc ((TypeState)3)
4 #define PCK_Object_Alloc_Header ((TypeState)4)
5 #define PCK_Object_Alloc_Header_Arr_MarkWord ((TypeState)5)
6 #define PCK_Object_Alloc_Header_Arr_KlassPtr ((TypeState)6)
...
30 #define PCK_MarkWord ((TypeState)30)
31 #define PCK_KlassPtr ((TypeState)31)
...

(C1)

In this series of typestates in Code C1, TypeState is a class for unique identifiers. Each identifier
is referenceable with a unique numeric value, as indicated by the implicit cast constructors refer-
enced above. The number zero (0) is reserved for PCK_UNMAPPED memory. Any top-level defined
<stmt> gets associated with it a nested hierarchy of addressable typestates. For example, a memory
location can be part of a free (PCK_Object_Free) or allocated (PCK_Object_Alloc) object. Notably
this means that no typestates of the form PCK_Alloc_* are generated, but indeed PCK_Object_*
are generated. The key is that one can choose which typestate contexts are diagnostically helpful
to track based on how memory is managed.

One important distinction is between the generated typestates PCK_Object_Alloc_Header_-
Arr_MarkWord and PCK_MarkWord. The latter, PCK_MarkWord, represents memory for a top-level
C++ variable not located in the Java heap.The former is a fully-qualified mark word of an allocated
array object header located on the Java heap. This typestate represents memory which was allo-
cated by the proper Java object allocation code. The distinction here is necessarily self-enforced,
based on annotation usage, but it is a diagnostically helpful distinction. The idea is that by default
internal memory allocation context is all-but lost once an initialization is complete. With the two
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1 namespace pck {
2 class Map;
3 class TypeState; // Includes an identifying member field of u64_t
4 Map create();
5 void destroy(Map m);
6 TypeState Map::get(Address a);
7 void Map::put(Address a, TypeState ts); }

Fig. 2. The VM-level interface to initialize and track a memory to typestate mapping. All functions here are
in the pck (Permchecker) namespace.

typestates however, we can now retain the context for validation or diagnosis purposes if and
when a corruption occurs.

However, the typestate distinction comes at a price. In order to specify when the distinction
does not matter, we must annotate the code with all of the allowable typestates. Instead of doing
this manually, the code generator does this for us. The generator creates names for collections of
typestates based on all the qualified names by which any given “leaf” typestate can be allocated.
For example, for the mark word typestates from Code L2 we get the following collection:

1 #define PCK_ALL_MarkWord PCK_MarkWord \
2 PCK_Object_Alloc_Header_Cls_MarkWord \
3 PCK_Object_Alloc_Header_Arr_MarkWord \
4 PCK_Header_Arr_MarkWord PCK_Header_Cls_MarkWord

(C2)

In this macro we have (1) a C++ variable mark word, (2) an allocated class’s or (3) array’s mark
word on the Java heap, and (4) a C++ array variable’s or (5) Java class variable’s mark word. This
collection is a fairly common idiom in memory managers. That is, a mark word accessor function
typically does not care which variant it accesses. By annotating code with this PCK_ALL_MarkWord
typestate collection, we get the benefit of a coarse polymorphic typestate when the precise distinc-
tion does not matter. At the same time, we still get the benefit of a detailed taint analysis when
Permchecker reports an error in terms of the precise typestate observed at run time.

4.4 Typestate Tracking
The VM’s interface to the typestate tracker is shown in Figure 2. Apart from its connection

to dynamic instrumentation, this interface operates how one would expect it to. An individual
shadow map can be created and destroyed, with each map maintaining an injective key-value
mapping from addresses to typestates. The special UNMAPPED typestate is the default value for
unaddressable memory, and UNMAPPED can be explicitly referenced as a typestate. The interface
further uses array-access overloading to provide the following map update and query syntax:

1 Address a; TypeState ts;
2 map[a] = ts;
3 pck::assert(map[a] == ts)

(C3)

In this Code C3, we have defined some address a and some typestate ts. On the second line, an
assignment operation calls Map::put to assign the r-value ts to the map location referenced by ad-
dress a. On the third line, an equality comparison operation calls Map::get to query the typestate
at address a and check that it matches ts. Note that the equality and map-access operations return
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proxy object types tracking what address was accessed, and the arguments to any comparisons.
This proxy information allows pck::assert to report a helpful error message in terms of the ad-
dress, observed typestate, and expected typestate of the comparison, rather than simply reporting
that the assertion failed.

As we will discuss in the next section, the dynamic instrumentation effectively performs an
assertion, like above, over the typestate map for each and every memory access executed by the
processor. To simplify our discussion, we focus on the (sufficient) use case of tracking a single
typestate map. In this case, the create and destroy functions get called near the beginning and
end of program execution, respectively. In the case of Hotspot, some complication arises from the
use of fork/exec system calls, requiring explicit map initialization after the main Java thread is
created. A more careful integration with thread and process creation system calls could provide
more automation of this process in the future. For now, this is unnecessary work to automate a
very small amount of code that a memory management developer knows exactly where to put.

4.4.1 In Practice. We initially inserted 52 assertions related to object mark-words and klass point-
ers in Hotspot. Of these, 11 assertions were subsequently replaced with annotations on simple
accessor functions, to be discussed in Section 4.5.1. A typical pattern in a memory manager is for a
simple one-line accessor function to access a specific set of typestates, and so a function-level anno-
tation is ideal. In contrast, manual assertions are ideal when instrumenting (1) compiled Java code,
(2) other VM components that cannot easily rely on the C++ compiler, and (3) when substantial
code refactoring would be necessary to systematically instrument certain memory accesses.

4.4.2 CodeGeneration. For some typestates, Permchecker’s preprocessor generates helpermacros.
One such macro manages all the typestate updates necessary to allocate a series of numerous
nested components. For example, for tracking the nested typestates associated with an array
header the preprocessor generates the following macro based on Code L2:

1 #define transition_Object_Alloc_Header_Arr (a) { \
2 map[words(a, 1)] = PCK_Object_Alloc_Header_Arr_MarkWord; \
3 map[words(a + words(1), 1)] = PCK_Object_Alloc_Header_Arr_KlassPtr; \
4 map[bytes(a + words(2), 4)] = PCK_Object_Alloc_Header_Arr_Len; \
5 map[bytes(a + words(2) + bytes(4), 4)] \
6 = PCK_Object_Alloc_Header_Arr_Gap; }

(C4)

In this Code C4 we see a series of array-update operations over the shadow map, as explained
earlier.The words and bytes functions in this code return a C++ proxy class indicating the location
and size of a piece of memory to update in the typestate map. For the two-parameter versions, the
first parameter is a starting address and the second parameter is a number of bytes to assign the
typestate to. For the one-parameter version, the parameter is just a memory size for use in offset
calculations. For example, the offset calculation in the second map update above computes the
address of a offset by one word of memory. The key is that this code fragment conceptually (if not
literally, for performance) boils down to a series of appropriate calls to Map::put.

4.5 Permission Tracking
Next, we need to be able to assign permissions to a piece of code in terms of the typestates the code
is allowed to access. The primary mechanism the toolchain supports for this purpose is permission
attributes on functions and classes in C++.The exact low-level mechanism to track this information
is interception of specific function calls by a dynamic instrumentor. We conclude this section by
discussing what bugs this dynamic instrumentor can and cannot detect as typestate violations.
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1 namespace pck {
2 enum Perms { RW, R, W, NONE };
3 Map::protect(TypeState ts, Perms ps);
4 Map::unprotect(); }

Fig. 3. The VM-level interface to set memory access protections by typestate, instead of a concrete address
like with the POSIX mprotect system call. The Map::protectmethod here applies only to the calling thread,
and temporarily overrides any previous protections for the given typestate. These previous protections are
restored by a subsequent matching call to unprotect.

1 __attribute__((pck_R (TypeState...)))
2 __attribute__((pck_W (TypeState...)))
3 __attribute__((pck_RW(TypeState...)))
4 __attribute__((pck_NONE(TypeState...)))

Total Mark & Klass
Lines added 1830 49
Transitions 144 25
Fncn Annots 64 24
Typestates 60 16

Fig. 4. Left: Read, write, and read-write annotation forms which can be attached to either a function or a
class to indicate that entity has permission to access the listed typestates. The pck_NONE option allows one
to explicitly remove access, notably on a member function where the class generally has permission but the
member function should not. Right: Lines of code added/modified in the VM to annotate/instrument the
most crucial parts of Hotspot (enabling Java object allocation). The “Mark & Klass” column counts lines of
code relating to just MarkWord and KlassPtr variants. The bottom-most row is a count of unique typestates
referenced in the instrumentation.

TheVM’s interface to the permission tracker is shown in Figure 3.This interfacemodels memory
access permissions by associating with each thread of execution a set of per-typestate permissions.
For example, each thread which calls an accessor function with read or write access to the mark
word of an object header can temporarily be given permission to access any such mark word.
This does not guarantee the correct mark word is accessed, just that the underlying memory was
allocated as such. The key is that an individual function, class, or algorithmic operation typically
either has permission to access the mark word, or it does not.

The protect and unprotect functions implement this permission model. These functions op-
erate similarly to the mprotect POSIX system call, but with a few differences. A call to protect
states that the currently executing thread now has permission to access any memory address in
the given typestate. A subsequent matching call to unprotect reverts the permissions to what
they were before. These functions are thread-safe, because each thread has its own permissions.
These functions are not safe with respect to non-reentrant control flow, such as runtime system
exception handling. Future work could automatically support arbitrary control flow by associating
permissions with instruction pointers instead of function entry and exit points.

In designing this part of Permchecker, a simpler model was considered where permissions could
only be updated with protect and the previous permissions are forgotten. This simpler stateless
model, however, fails to account for a nested call frame for which the parent and child frames
execute functions both with permission to access the same typestate. Calling unprotect during
the child’s epilogue would therefore incorrectly wipe out the permissions the parent still needs to
possess. Therefore the stateful implementation of protect in the dynamic instrumentor tracks a
stack of bit-vectors corresponding to nested function annotations.

4.5.1 Function & Class Annotations. In Figure 4, on the left, we have a series of typestate per-
mission annotations for functions and classes. On a function, an annotation compiles to calls to
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protect and unprotect in the prologue and epilogues of the function. On a class, the annotation
gets distributed across functions in that class to the same effect. Based on this model, an annotated
function calling some other function conservatively grants the callee the same permissions it has.

Also in Figure 4, on the right, is a breakdown of modifications made to the Hotspot VM to
achieve permission checking of object header words. The modifications reported are the ones at-
tributable to the memory management developer, with the Total column including modifications
necessary to support tracking of the Java heap across the entire allocation hierarchy. These num-
bers represent a reasonable upper bound on the annotation burden of dealing with a small number
of the most complex typestates in a memory manager.

The lines of code added to Hotspot include modifications to the JIT compiler, assembler, argu-
ment parsing, imports, error reporting, foreign function interface, and write barrier. Apart from
these tasks, 144 and 64 lines were respectively added to track typestates and to apply permissions
to code. Of those typestate management lines of code, 49 deal with just a variety of 16 typestates
pertaining to the mark or klass word of an object. The remaining 44 of 60 typestates provide di-
agnostically helpful allocation context for when the mark or klass word is accessed erroneously.
Such typestates include allocated object fields, free regions, reserved pages of memory, and others.

The amount of annotation effort required to validate layout safety for a typestate correlates
with the number of places in the code memory changes to/from the typestate, plus the number
of instructions allowed to access it. As a result simpler kinds of memory, like the page allocator
in Hotspot, require relatively few annotations. The desired level of specificity then governs how
many different kinds of memory are annotated, leading to a higher annotation effort.

Permchecker allows for progressively annotating each typestate in isolation while still being
effective for diagnosing violations of the annotated typestate(s). Thus the value of Permchecker
is directly proportional to the number of completely annotated typestates. Annotating the appro-
priate places in the code for a single typestate is the smallest unit of work for a developer to
accomplish when getting started with Permchecker. In our experience such a task can take any-
where from a few minutes, to a few hours, to at most a few days of a single developer’s time. In the
next few subsections we go on to discuss how Permchecker reports helpful typestate mismatches
in the presence of either a specification or an implementation error.

4.5.2 True Negatives. Consider a VM function intended to access the mark word of an object,
and we wish to give the corresponding assembly code permission to access mark words therein.
Therefore we want the function to compile to an instruction sequence that looks like the following:

1 // Begin perms: stack (RW)
2 mov $0x21,%esi
3 mov $0x2,%edx
4 // Begin perms: stack (RW) & mark word (W)
5 call protect // Mangled name: _ZN3pck3Map7protectEyNS_5PermsE
6 mov -0x28(%rbp),%rax
7 movl $0x1,(%rax) // Write to a mark word
8 call unprotect // Mangled name: _ZN3pck3Map9unprotectEv
9 // Ending perms: stack (RW)

(A1)

Code A1 executes as follows. We store immediate values for a mark word’s typestate (0x21) into
register esi and for write access permission (0x2) into edx. On line 5 we call protect to register
this permission. Next on line 6, we load an address to an object off the stack and into register rax.
Finally, on line 7, we set four bytes of the object header to 0x1 to indicate it is a regular unlocked
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object. After this, a call to unprotect reverts the thread’s permissions to what they were at lines
2 and 3. The idea is that if line 7 writes to 4 bytes in a valid mark word typestate then the program
does not have a memory error – a true negative check by Permchecker.

4.5.3 True Positives. Now consider a bug where the mark word annotation is in the wrong place,
or the C++ compiler erroneously reorders a memory access to the object’s mark word. Thus the
memory access occurs outside the scope of the protect call as follows:

1 // Begin perms: stack (RW)
2 mov $0x21,%esi
3 mov $0x2,%edx
4 call protect // Begin perms: stack (RW) & mark words (W)
5 call unprotect // Begin perms: stack (RW)
6 mov -0x28(%rbp),%rax
7 movl $0x1,(%rax) // Violation!

(A2)

In this Code A2 Permchecker will report an access violation because line 7 here did not have
permission to write to the mark-word even though line 7 is supposed to be able to do so. The key
is that Permchecker does not make a claim of truth as to which permission was correct: the code
or the memory. By doing so, Permchecker can effectively report localized memory errors without
needing to assume any code is necessarily correct. Thus, not only is a bug in the implementation
reported as a typestate mismatch, but a specification (or compiler) bug is reported as such too.

4.5.4 Benign Checks. In the two snippets of assembly code above, we in fact accessed two different
kinds of memory: a mark word, and a pointer to that mark word found on the stack. For the true-
negative, both memory accesses occur within the scope of our call to protect, but we only needed
themarkword access to be checked. In checking both, wemade a tradeoff in how Permchecker was
designed. The idea is that it is often sufficient to check a memory access against a set of possibly
unrelated typestates when doing so simplifies our permission specification.

4.5.5 Exceptions Limitation. When Permchecker instruments a functionwith calls to protect and
unprotect, it does not handle the presence of throw-catch style C++ exceptions. Nor does it reason
about any other dynamic feature which alters ordinary program control flow in a permission-
annotated function. A long term goal for Permchecker is to obviate this limitation by directly
relating typestate permissions with individual memory access assembly instructions in the code
spaces of a process. This high level of individual detail, however, increases by default the upfront
annotation cost required to annotate a memory manager. Therefore some care must ultimately go
into the design of assembly instruction permission techniques for Permchecker to support.

4.5.6 Failure Modes. A false positive is generally not possible with Permchecker.This is because a
typestate error indicates the presence of a bug in the memory manager, the layout specification, or
both. Such a bug can even be present and reported as an error when the application runs correctly.
Such a report indicates an at-least benign bug that should be fixed.

In contrast, a false negative is generally possible with Permchecker. For example, a false negative
will occur in Code A1 when attempting to write the mark-word actually writes a value to stack
memory. Permchecker does not report this as an error because the executing thread had permission
to write to the stack when the purported mark word instruction clobbers the stack. To mitigate
this kind of source of false negative, we have come up with a dynamic heuristic to understand the
sensitivity of the specified code permissions.
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1 // lo addr --> |-----------------|
2 // . fields... .
3 // [ k words ] | (prev obj) |
4 // raw ptr --> |-----------------|
5 // [ 1 word ] | fwding pointer |
6 // obj ptr --> |-----------------|
7 // [ 1 word ] | mark word |
8 // |-----------------|
9 // [ 1 word ] | klass ptr |

10 // |-----------------|
11 // [ n words ] | fields... |
12 // | (variable size) |
13 // . .
14 // . .
15 // hi addr --> |-----------------|

// |-----------------| <-- lo addr
// . fields... .
// | (prev obj) | [ k words ]
// |-----------------| <-- raw & obj
// | mark/fwd word | [ 1 word ]
// |-----------------|
// | klass ptr | [ 1 word ]
// |-----------------|
// | fields... | [ n words ]
// | (variable size) |
// . .
// . .
// |-----------------| <-- obj end
// | Unallocated due | [ 1 word ]
// | to elimination | <-- hi addr

Fig. 5. ASCII-art diagram depicting the difference between two memory layouts central to an off-by-one
bug affecting memory safety.

The heuristic Permchecker provides is to generate a table of typestate usage statistics at the end
of a program’s execution. This table includes which typestates each instruction1 was observed to
have accessed, and whether or not any permissible typestates were never accessed.The idea is that
any given instruction in a mostly-bug-free memory manager will access a fixed set of typestates
after sufficient testing. Then, any remaining permissible typestates are suspicious. The permission
annotation could have been overly broad, blanketing a number of unrelated memory access in-
structions. Or, the instruction was insufficiently tested. In either case, there exist remedial actions
the memory management developer can take which either incrementally improve the precision of
the annotations, or improve the typestate coverage of the testing benchmarks.

4.6 Runtime Debugging
With typestate tracking and permissions in place, we now need to check the validity of each mem-
ory access.The goal is to ensure that for each address the only load and store instructions operating
over it occur when the code has permission to access it. This section discusses how we achieve
this goal by presenting an example where a header’s mark word is incorrectly accessed.

4.6.1 Mark Word Example. In Figure 5 we see two distinct memory layouts. On the right is the
layout of an allocated Java object, as used in the production version of Hotspot. On the left is a
modified version of this layout, with a word of memory containing a forwarding-pointer added
to the beginning of the object’s header. In the middle of the diagram arrows pointing left-to-right
indicate how the different typestates shift in the address space when the author of the left layout
modified a part of the memory manager to use the layout on the right.

In Figure 6, we see the error observed and reported by Permchecker when two different pieces
of code disagree on the expected layout of objects in memory. In this case, the VM allocates and
initializes the contents of objects according to the production version of the VM where non-array
objects consume 2 words of memory for the header. When the VM proceeds to access memory
according to the development version with an extra header word, Permchecker reports that an
offending memory access read a Klass pointer but expected (had permission to access) mark word
typestates. The idea here is that Permchecker does not assume that either the observed layout or
1Requires debugging symbols to get source locations.
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[error][pck] /jdk13/src/.../oop.inline.hpp:123
Permchecker Violation in Thread #2:
Expected typestates: PCK_MarkWord, ...
Observed typestate: PCK_Object_Header_Alloc_KlassPtr
Address = 0x00007ffb1c43e008
Address is preceded by 1 words of PCK_Object_Header_Alloc_MarkWord
Address starts 1 words of PCK_Object_Header_Alloc_KlassPtr
This is followed by 6 words of PCK_Object_Alloc
Dumping typestates to /memdbg/permchecker.3952.log
Dumping core file to /memdbg/core.3952

Fig. 6. The error reported by Permchecker when code assuming the left-layout of Figure 5 attempts to access
the mark word of an object allocated and initialized by code assuming the layout on the right of that figure.

the expected layout are necessarily correct. In fact, both could be incorrect. Instead, we label code
with intentions and Permchecker treats those annotations not as a ground-truth specification of
expected behavior, but as a mechanism for pin-pointing inconsistencies.

4.6.2 Lightweight Debugging. Permchecker supports both a lightweight and a heavyweight mode.
In the lightweight mode, only memory locations explicitly assigned a typestate are checked for
access permissions. In this mode, a program with no updates to the typestate map will never
produce a violation because all memory locations remain in the UNMAPPED typestate. The idea is
that the lightweight mode eliminates a lot of error detection noise when the memory manager
is initially being annotated, favoring local sensitivity over system-wide sensitivity. It does this
by only telling the developer when an unexpected piece of code accesses memory in a known
typestate. Memory accesses to locations with unknown typestates are ignored.

4.6.3 Heavyweight Debugging. In the heavyweight mode, Permchecker reports an impermissible
memory access for all typestates, including UNMAPPED, as an error. In this mode, a programwith no
updates to the typestate map will produce a violation for every single memory access because no
instruction has permission to read or write unmapped memory. The idea is that the heavyweight
mode increases the number of true positives once a related set of typestates have been annotated in
the memory manager, thus increasing system-wide sensitivity. While the lightweight mode allows
the developer to build the lifecycle of an individual typestate, the heavyweight mode discovers all
buggy, unspecified, or improperly specified memory accesses.

4.6.4 Thread Permissions. In Permchecker’s dynamic instrumentor, a per-thread permission tracker
is implemented as two extensible bit-vectors representing read and write permissions each with
one bit per typestate. When a bit in the vector is set, the associated thread has that kind of (read
or write) permission to the typestate associated with the offset of the bit into the bit-vector. This
mechanism directly relates to how the lightweight and heavyweight modes differ.

The lightweight mode can be thought of as an opt-in checking model, where all typestates im-
plicitly have their read and write bits set, except an explicitly named set of them.The one exception
to this occurs when a thread’s permissions are annotated as pck_NONE(<ts>), which does cause
the given <ts> to be checked. In contrast the heavyweight mode can be thought of as an opt-out
checking model, where all typestates implicitly have their read and write bits unset. As a result
every single memory access is checked by default, and the developer must tell Permchecker to
explicitly allow a memory access by annotating it.
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Table 1. Each feature Permchecker touches, what system component it involves, and the feature’s purpose
with respect to typestate.

Feature Component Typestate Purpose
FFI VM modification Traffics typestates from non-native VM code with

prerogative over typestate.
Annotations Clang extension Distributes a typestate permission over an

entire VM component: functions and classes.
Layout Spec Preprocessing tool Allows for developer-defined relationships

among typestates as an allocation hierarchy.
Codegen Preprocessing tool Supports the expression of common permission

idioms and typestate transitions.
Macros VM boilerplate Manages error-prone calculations for offsets

among typestates.
Proxy objects C++ overloading Integrates typestate operations with the VM’s

host language for ease-of-use.
Tracking API pck namespace Flexibility to manage typestates at non-function

or class boundaries.
Assembly instr. JIT compiler Typestate checking of runtime generated code.
Checker Dynamic Instrumentor Applies a simple and rational checking model

across every single memory access.
Shadow memory Library Maintains a snapshot of the typestate map.

5 DEBUGGING TOOLCHAIN ARCHITECTURE
Different components of a VM have access to widely varying mechanisms to support typestate
tracking. A simple numeric typestate tracking system is a modest endeavor in and of itself, short
of supporting fully featured contracts and logic. In achieving the former, Permchecker takes ad-
vantage of the language features listed in Table 1 in order to manage and track typestates.

5.1 Artifacts & Mechanisms
In Figure 7 we show how typestate information flows through the toolchain at different levels of
abstraction. For instance, the dynamic binary instrumentor (DBI) intercepts function calls at run
time to the typestate tracking interface. The DBI then uses Pin’s API for instrumenting memory
accesses, in order to check typestate permissions. The idea is that a shared universe of typestate
identifiers applies across all abstraction levels. This is necessary because each level accesses and
mutates the exact same pieces of memory according to specially crafted policies. These policies
all require unsafe low-level access, unlike any other domain to our knowledge, in order to extract
every ounce of performance from components including the JIT compiler, VM host-language, al-
locator, garbage collector, and heap mutator.

Many of the components listed in Figure 7 center around compilation of a C++ or C-like im-
plementation language for the memory manager. The Permchecker toolchain most seamlessly al-
lows for the instrumentation, compilation, and dynamic interception of typestate-related runtime
events of a memory manager implemented in C++. We now discuss, in Sections 5.2 and 5.3, our
experience using Permchecker components in two memory managers other than Hotspot.
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Fig. 7. Architecture of the Permchecker toolchain, indicating how typestate tracking and permissions are
implemented. Nodes are artifacts in the system which involve typestate, and arrows are mechanisms for
enacting their purpose.

5.2 Jikes RVM
In the Jikes RVM, Permchecker aided in the detection and diagnosis of a latent memory layout bug
in an uncommon configuration of the runtime system. This bug manifests when two header fields
of an object are defined to be different sizes, resulting in a memory error. This error is caused by
an incorrect size variable being used to compute the offset of one of the two object header fields.
The bug however is benign in the default, common, system configuration because the incorrect
size variable happened to be the correct value. Notably, the offset calculation and resulting errant
memory access is implemented in Java.

Detecting this Java bug with the Permchecker components listed in Table 1 involves three con-
ditions. First, a mature FFI to C++ or assembly is necessary to communicate typestate information
to members of the pck namespace as compiled with Clang or GCC2. We consider this burden min-
imal, as a FFI is an already integral part of memory manager implementations. This was the case

2Clang only required for function and class annotations.
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with Jikes RVM, for which a readily extensible FFI to C++ allowed us to instrument the VM with
typestate transitions and code permissions.

The second condition is that the layout specification language’s codegen and accompanying
typestate annotations do not apply. Instead, custom VM-specific annotations for defining code
permissions were implemented into the staged compilation process of Jikes RVM. Functionally
these annotations are equivalent to the Clang extension for permissions. However, the presence of
a separate bootstrapping Java compiler in the Jikes RVM build process complicates the detection
of early memory corruption with annotations. For example, in order to achieve 100% memory
coverage with typestates a mechanism for tracking a memory location across bootstrapping stages
is necessary. We leave this to future work.

The final condition arises from the fact that debugging information, such as filenames and line
numbers, are not necessarily readily available to the permission-checking Pin tool in the form of
DWARF debugging information. To address this, the Pin tool includes the ability to receive on
the command line a mapping from instruction pointers to filenames and line numbers. While this
ability is not utilized in our study of Hotspot, our experimentation with the Jikes RVM requires it
to report helpful diagnostic information. As a part of Jikes RVM’s compilation process a debugging
map is produced, thereby reducing the burden of enabling Permchecker’s diagnostic capabilities
to mechanically translating the information into a reportable form.

Finally, with respect to Jikes RVM, the latent memory layout bug discussed earlier closely mir-
rors the Hotspot header layout bug causing the error reported in Figure 6. In the Jikes RVM bug,
Permchecker reports amemory access to one object header field when the VMonly had permission
to access another (adjacent) field. Upon inspecting the recorded typestates for surrounding mem-
ory locations it becomes apparent that the pointer access is in conflict with memory as-allocated,
leading directly to the source of the bug.

5.3 dlmalloc
This section discusses the applicability of Permchecker’s dynamic typestate checking capabilities
to the implementation of a manual memory allocator.

Instrumentation Burden. In the dlmalloc we fully annotate and instrument typestate transitions
for memory related to a program’s heap as allocated through the standard malloc and free func-
tions.The source code for unmodified dlmalloc version 2.8.6, ignoring mspace variants of the code,
amounts to around 5, 500 lines of code and documentation. After annotation, the source code con-
tains an additional 600 lines of code including code permission annotations, typestate transitions,
and manual typestate assertions.

Another 400 lines of boilerplate code consists of glue code for Permchecker, typestate identifier
definitions, and typestate transition macros. Chronologically, we studied dlmalloc prior to devel-
oping any of the components listed in Table 1, except the last two rows comprising the dynamic
checker and shadow memory. Therefore, the 400 lines of code added to dlmalloc correspond to
code automated in our study of Hotspot. Of the 600 lines of code annotations and instrumentation
listed, about 100 correspond to explicit calls to protect and unprotect in dlmalloc. This effort is
reduced by half by the Clang-based function annotations, as applied to Hotspot.

Lessons Learned. Annotating a legacy memory manager with typestate permissions is a
practice in pattern matching as one spelunks through the code. For example, dlmalloc exten-
sively uses C structs to “declare a view into memory allowing access to necessary fields at known
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offsets from a given base.” [Lea 1991]3Annotating access to such fields is a systematic refactoring-
like process of annotating each field (de)reference operation.

It is ideal to test the annotation of a memorymanager with typestates gradually.While
the appropriate typestate for a function is typically readily apparent from textual context in the
program, annotations are no less susceptible to typos, categorical mistakes, and missing annota-
tions by the programmer. We discovered this in our study of dlmalloc by testing the system after
scanning for instances of a code pattern (such as accessor functions), and annotating them all
appropriately.

The most common instrumentation failure mode we observed involved failing to adequately
generalize an implementation pattern, resulting in missed annotations. Such failures become im-
mediately apparent when tested by Permchecker in conjunction with inspection of code and mem-
ory coverage statistics. It is reassuring to recognize that these simple procedures can effectively
rule out memory corruption— procedures includingmanual refactoring, iterative testing, and code
and memory coverage inspection.

In first studying dlmalloc then switching to Hotspot, we pinpointed the language tools needed
to instrument a memory manager (1) systematically, (2) gradually, and (3) progressively towards
ruling out memory stomping. We then built and studied these tools, each listed in Table 1, in the
context of Hotspot. Ongoing future work now involves developing more expressive tooling for
post-hoc typestate inspection, live (GDB-like) breakpoints, historical program tracing, and pro-
gram slicing in terms of typestates.

6 BUG INJECTIONS
In this sectionwe present amethodology, and application thereof, for injecting bugs into amemory
manager. The idea is that each injected bug is an instantiation of a template designed based on real
bugs found in memory managers. Each template encapsulates the memory safety or correctness
effects of the original bugs, with consistent reproducibility of many unique injectable bugs at
modest scale. Having such unique bugs at scale then allows us to stress the system for a broad
array of behaviors and failure modes.

6.1 Object Cloning Bug Injection
The core functionality of one bug template used to inject bugs into Hotspot is shown in Figure 8.

The code from this figure is placed in the compaction phase of the Shenandoah garbage collector.
More generally, the idea is that this particular template can be injected anywhere in the codewhere
an object pointer (oop type) is available. The template works by delaying bug injection until some
number of executions have happened. Once this happens the code injects a single non-recurring
bug that will not simply crash the system outright.

To run this template, wemust first decide on an initial value for __CORRUPTION_COUNTDOWN.This
value tracks howmany objects have been forwarded during concurrent compaction, and therefore
changing it varies which exact objects are affected by the injected bug. By varying it over a large
number of sufficiently long-running program runs, we now have numerous injected bugs each
with differing effects on the downstream behavior of the system.

It should be noted that this bug template is not entirely divorced from typestate annotations.
In fact, the functions is_forwarded, klass, and forwardee are annotated with the appropriate
access permissions, allowing ostensibly buggy code to access memory. However, it is evident these
functions are used here in an appropriate, non-buggy, manner. They are all used to access header
words of valid heap objects for which the typestates match the usage of the values being read.

3Emphasis added, quotes removed.
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1 oop p = ...;
2 if (DoInjectCorruption && InjectID == 1 && !__CORRUPTION) {
3 if (__CORRUPTION_SIZE > 0 && p->klass() == first_kls) { // 3rd case
4 HeapWord *src = (HeapWord*) p;
5 HeapWord *dst = first_forwardee;
6 Copy::aligned_conjoint_words(src, dst, size);
7 oop(dst)->init_mark_raw();
8 log_info(permchecker)("Corruption #1");
9 __CORRUPTION = 1;
10 } else if (__CORRUPTION_SIZE == 0 && // 2nd case
11 __CORRUPTION_COUNTDOWN == 0 && p->is_forwarded()) {
12 __CORRUPTION_SIZE = (size_t)p->size();
13 first = (HeapWord*) p;
14 first_kls = p->klass();
15 first_forwardee = (HeapWord*)p->forwardee();
16 } else if (__CORRUPTION_COUNTDOWN > 0) { // 1st case
17 __CORRUPTION_COUNTDOWN--; } }

Fig. 8. The core functionality of a template for injecting object cloning bugs into Hotspot. In the third
conditional branch, we count down some number of executions of this code fragment. In the second
branch, we then record an object located at pointer “p”. Finally in the first branch, we discover a sec-
ond object of the same Klass type and (incorrectly) forward its contents to the destination of the first ob-
ject. The variables first, first_kls, first_forwardee, __CORRUPTION_COUNTDOWN, __CORRUPTION_SIZE,
DoInjectCorruption, InjectID, and __CORRUPTION are static class members.

It is not until the Copy operation that it becomes clear that a memory error is present. During
this operation, we read the contents of a valid object from src. But as it turns out, we write these
contents to a location which already contains an object as well. This fact about the typestate of the
destination is already tracked by Permchecker when the destination first received a valid object,
and therefore the operation is in error.

When the developer is told about this error, it might be tempting to think there is a specification
error and that the developer should give the copy operation permission to overwrite allocated type-
states. This option however makes no sense after minimal scrutiny, because transporting an object
from one location to another should never be allowed to write to memory already in an allocated
state. Instead, the developer must do one of two things. One, he can check that the destination
is in the appropriate free typestate, transition it to the allocated typestates, and then perform a
copy operation with permission to write to the allocated typestates. Or two, he can specify the
copy operation has permission to write to the free typestate, and then transition the memory to
the allocated typestates after copying.

The latter technique is preferable because it is less error-prone: the developer cannot forget to
insert a typestate check, because the check for free memory is implied by a new annotation on
the copy operation. The key is that with or without adding either the permission annotation or
typestate transition, Permchecker reports an error. Based on this reasoning, it is generally better
practice when instrumenting a memory manager to rely on automatic checks by the dynamic
instrumentor than to use a technique that relies on the developer to check a typestate before
changing it. Discovering this sort of best practice is one overarching goal of this work: to not only
build correct systems, but to build error-resistant debugging and instrumentation techniques.
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Table 2. Breakdown of bug templates injected into Hotspot, as detected with and without Permchecker. The
second column group, Injections & Pck, indicate the total number of executions of the VM and how many
of those were detected by Permchecker, respectively. The third column group indicates how the VM reacts
in the absence of Permchecker.

Template Injections Pck Ad-hoc OS Error Output OOM Benign
Object cloning 13, 812 13, 812 4, 820 0 8, 957 0 35
Use-after-free (R) 836 832 0 379 452 1 4
Use-after-free (W) 799 799 0 346 432 0 21
Overflow (padding) 8, 658 8, 658 313 0 0 0 8, 345
Overflow (no pad) 10, 026 10, 026 9364 662 0 0 0
Wasted Memory 1, 000 0 0 0 0 0 1, 000
Move Failure 976 649 562 31 2 5 376

6.2 Bug Template Results
In Table 2 we see how well Permchecker managed to detect the injection and execution of a series
of bug templates, including the one just discussed in Section 6.1. A bug template when instantiated
and tested with specific program inputs is an error benchmark. A key strategy we developed to
create good error benchmarks was to confine the effects of a bug to a single execution of some
operation by the memory manager. This strategy provides the following benefits:

• There is an increased chance of the bug evading traditional error detection mechanisms,
mimicking the rarity of incidence exhibited by similar real bugs.

• No static analysis is necessary in order to synthesize or construct conditional statements
which help rarify the bug’s execution.

• The number of injections scales because the number of dynamic operations performed by
the garbage collector is unbounded, unlike the number of static injection sites.

Based on this strategy, we created the bug templates listed below. For each template, the number
of injections reported in Table 2 reflects the number of times we were able to get the template’s
preconditions to be satisfied. For example, the use-after-free templates require finding an object
near the end of its containing region, and therefore required more compute power to accumulate
the same number of injections as some of the other templates.
Object cloning - this bug template is the code fragment from Figure 8, which discovers two object
pointers of the same Klass type, and overwrites the memory of one with the other. This template
generally works in any VM function with access to at least one heap object pointer per execution.
Use-after-free (read) - this bug template discovers a single object pointer near the end of a region,
waits for its contents to be evacuated, and then redirects the application’s next field access to use
the freed memory as a base pointer in its load instruction.
Use-after-free (write) - like above, but the field access is a write instruction causing garbage to
be “corrupted” and the intended object field to not be updated.
Overflow (padding) - this bug template duplicates the Klass metadata for a single object instance
when it gets allocated, modifying the duplicate Klass to indicate this one object has some multiple
of an object’s alignment less of memory than it requires based on the fields in the object.
Overflow (no padding) - like above, but the injection only happens when the last field of the
object ends on an object alignment boundary.
Wasted Memory - this bug template operates similarly to the overflow templates, but the Klass
is modified to indicate the object consumes more memory than it requires.
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Move Failure - this bug template discovers an allocated object residing at the end of a memory
region and skips compacting it, possibly causing other object(s) to point to a valid-looking object
that the memory manager believes to be free memory that can be allocated into.

6.3 Choice of User-Level Application
One kind of memory bug we wish to study is one that does not crash the program at all. Instead,
it affects the correctness of the user application such as program output. The incidence of output-
based errors relies heavily on the domain and specifics of the user application. Characteristics
affecting whether or not an output error will arise include object allocation patterns, drag time
between an object’s last use and when it becomes unreachable, and more. For the results in Table 2,
we modified a version of GCBench [Ellis et al. 2014] to maximize fragility by minimizing drag.

Fragility, here, means how likely an application is to compute the wrong result if one of its
objects gets corrupted. The original unmodified version of GCBench is a prime example of a non-
fragile benchmark. GCBench by default iteratively constructs a number of binary trees of certain
depths, in order to stress the performance characteristics of a garbage collector. The benchmark is
not actually intended to compute anything of algorithmic value. Therefore, so long as the applica-
tion terminates at the end of main, it “computed” the correct value.

In contrast our modified version of GCBench maximizes fragility. It does this by computing a
hash over the contents of each node in a binary tree shortly before expecting the tree to become
garbage. This hash iteratively accumulates over each node allocated. The hash is printed upon pro-
gram completion.This strategy aggressively links correctness of application output to the presence
of heap corruption. This strategy is further ripe for automation over any existing application in
domains other than just performance analysis.

6.4 Analysis & Effectiveness
With the use-after-free (write) template, both pointer updates and primitive field updates were af-
fected throughout the various error benchmarks. As a result a small number of the benchmarks ter-
minated significantly early (with incorrect program output), presumably because a failed pointer
initialization lopped-off a significant portion of a recursive data structure before it was processed
by the application. The same behavior appears to have happened with the use-after-free (read)
template, where some of the incorrect-output benchmarks terminated early because a load of a
pointer to a large recursive sub-structure was redirected to a smaller one.

Of the 4 benign results with the use-after-free (read) template, all of them went undetected by
Permchecker. This means that the freed memory was necessarily quickly reallocated by the mem-
ory manager, bringing it to a typestate validly accessible by the application mutator. Subsequently
the application accessed a field at the wrong address, but happened to read the correct value so-as
to be benign. We believe these 4 injections have to do with leaves of a binary tree being imple-
mented as the NULL value. As a result a memory access to the left or right child of a node was
corrupted, but would have received the NULL value it was supposed to read anyways.

This behavior exposes a limit to Permchecker’s checking capability. Permchecker cannot detect
a dangling pointer error when the memory pointed to by the dangling pointer is reallocated to
a similarly allocated object of the same typestate and size. Valgrind’s Memcheck tool is similarly
unable to detect this subclass of dangling pointers, for a fundamentally identical reason. Neither
tool checks how a pointer value is obtained, just that an observed access to the referenced memory
is permissible in each tool’s checking model.

6.4.1 Observable Behaviors. In Table 2 we break down the frequency with which each bug tem-
plate causes a variety of observable behaviors in the absence of Permchecker.These behaviors are a
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holistic collection of failure modes that a developer reasons about while debugging. The following
list defines each failure mode:

• Ad-hoc: a VM assertion error, usually from a suspicious looking pointer or value.
• OS Error: a segmentation fault, bus error, or other OS error even if the VM intercepts it.
• OOM: an out-of-memory error reported by the VM.
• Output: the program successfully terminates with incorrect user-level textual output.
• Benign: the program successfully terminates with correct user-level textual output.
• Deadlock: corruption causing non-termination. This was not observed in testing.

We consider “benign” program behavior to be bad when a corruption is known to have occured.
In fact, all the benign bugs from Table 2 can rightly be considered failure modes – in each case
the system does not exhibit signs of known corruption. The “Wasted Memory” benchmark, too,
corrupts the layout of memory. This corruption occurs benignly in a way that the Permchecker
annotations were unable to detect because no read or write instructions access the “extra” memory.

6.4.2 Utility of Error Reports. It is desirable for the contents of an error reported by Permchecker
to be diagnostically “effective.” Subjectively, an effective error report is one which identifies infor-
mation pertinent to the source of the error. With typestate checking, a simple first-order metric
is whether or not either the permissible or the observed typestates, of a Permchecker error report,
indicates the memory (or layout) which was actually corrupted.

In all of the Permchecker error reports pertaining to Table 2, each report included the pertinent
(corrupted) typestate. For instance in the “Overflow (padding)” template, Permchecker always re-
ports an error where the program had permission to access an object Field, but in fact accesses a
Padding typestate. Similarly, with the “Overflow (no pad)” template, Permchecker always reports
an error involving access to a MarkWord but observes a Field access, or vice-versa.

The takeaway is that typestate checking improves sensitivity over the existing ad-hoc error
checks. Checking also exhibits increased diagnostic value by reporting an observed type, in-lieu
of just an expected type implied by the stack trace of an ad-hoc check. In essence, Permchecker is
capable of meaningfully diagnosing a generalized class of initialization bugs.

An initialization bug is a bug inwhich a resulting program error is traceable to a root cause based
on the most recent component of the system which (1) initialized the memory to its observed state,
or (2) should have initialized it to its expected state. Part (1) indicates Permchecker’s bug detection
capabilities are similar to that of a taint analysis. Part (2) indicates Permchecker’s ability to detect
some control-flow bugs, e.g. a missing deallocation call.

Notably missing from these two kinds of bugs are value and logic bugs. For example, a garbage
collection (GC) algorithm failing to track all GC roots leads to a premature free. Permchecker
then detects this situation as a memory access by the application to purportedly free memory.
This safety manifestation of a decidedly logic-based GC bug illuminates the difference between
diagnostic value and pure detection – Permchecker reports less effective information for value
and logic bugs than it does for initialization bugs.

6.4.3 Latency of Error Reports. Prior to writing bug templates and testing their impact on the be-
havior of the VM, we had little basis for any kind of insight into how quickly typestate annotations
would be able to detect a memory safety error compared to existing ad-hoc checks in the VM. In
one formulation, we believed existing and often value-based sanity checks in the VM might excel
at proactively preventing bad values from being operated over. In contrast, Permchecker’s types-
tate annotations might excel at detecting bad operations once they happen, after a bad value has
already been created computationally rather than loaded from memory.
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For the bug templates we chose, this formulation was entirely not the case. In all the injections
from Table 2, Permchecker detects an error accounted for in the third column prior to
any corresponding error accounted for in the fourth (ad-hoc) column. Methodologically
this ordering is determined by running the VM with both forms of checks enabled, but where the
program simply logs the error reports rather than terminating immediately. This methodology
has the benefit of obviating any need to create strictly reproducible thread schedules for the VM.
Furthermore it is valid to compare program behaviors this way because program checkers have
ostensibly no side-effects or impact on values in the VM.The tradeoff is that this methodology can-
not compare one-to-one results of Permchecker with any similarly purposed, but non-composable
with Permchecker, dynamic instrumentation tools.

7 MOTIVATING OBJECT MONITOR BUG RESULTS
We now discuss the results of debugging and diagnosing the deadlock bug, as motivated at the
beginning of Section 1. This discussion necessarily benefits from hindsight, as the bug was in fact
diagnosed and fixed without the aid of Permchecker throughmanual instrumentation of Hotspot’s
code which manages object monitors. An object monitor is a locking mechanism which prevents
two or more threads from executing Java methods of the same object instance at the same time.

7.1 Annotation Considerations
By instrumenting object monitor code with ad-hoc log statements, the original debugging devel-
oper ultimately observed an erroneous lock operation.This erroneous operation is unique because
it is memory corruption. Memory corruption typically involves an access to memory containing
data of the wrong type. In this object monitor bug, however, this was not the case. The root cause
occurs in a function checking the boundedness of a memory location on the Java stack. This func-
tion incorrectly reports malloc’d memory adjacent to the stack as being part of the stack. Thus, a
pointer to memory of the correct type (object monitor) is corrupted by code allowed to access it.
In applying Permchecker annotations to Hotspot code related to object monitors, we observe

some benefits as well as drawbacks to typestate annotations. First, a permission annotation on a
function is applicable to all callers of the function. As a result, a (calling) context sensitive typestate
property is in tension with code reuse – typestate annotations must invariably be placed higher
and higher in the call stack, leading to more and more annotations at individual call-sites.

With respect to memory layout oriented typestates, however, there exist actionable and sys-
temizable mitigations to the code smell of widespread annotations. In the case of Hotspot’s object
monitor code, we mitigate this by specializing multiple instances of a ObjectMonitor C++ class
for each allocation context (or hierarchy). The idea here is that the specialization of the existing
(object monitor) functionality maintains functional equivalence and therefore the modification
cannot by itself introduce (non-Heisenbug) program errors.

7.2 Object Monitor Refactoring and Debugging Process
The allocation contexts for ObjectMonitor include certain C++ runtime system code managed by
the C++ compiler, and compiled application code compiled by the Java compiler. An object monitor
allocated for the former purpose is allocated into the malloc heap. In contrast, an object monitor
allocated for the latter purpose is allocated onto the Java stack. By first separating out call-sites of
accessors based on these two allocation contexts, Permchecker is then able to correctly validate
layout safety in each context.The idea here is that this refactoring process is (1) minimally invasive
with respect to functionality, (2) adds otherwise unknown information to the implementation /
artifact, and (3) systematically applicable to all allocation hierarchies. The application of object
monitor typestates to Hotspot went as follows:
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• We identify allocation sites of object monitors, and annotate them with typestate transi-
tions.These sites include ones in C++ as well as generated assembly from the Java compiler.
A grep for the ObjectMonitor class was a good first step here.

• We refactor the ObjectMonitor class to specialize two versions of it with annotations.
• We propagate refactoring up to call sites for each of the allocation contexts: stack & malloc.
• Finally, we validate the memory layout by running preliminary test applications which
exercise the object monitor related runtime system code.

In the last step above, Permchecker reports as a violation any (1) access patterns we missed or
applied annotations to incorrectly, and (2) true memory layout errors. Amissed access patternmay
appear to Permchecker as an invalid memory access. A true memory layout error for the object
monitor deadlock bug appears as a call site to an object monitor accessor function intending to
lock a monitor on the Java stack, but is observed by Permchecker to be on the malloc heap.

7.3 Boundedness and Diagnosability
The most applicable class of properties also validated by existing memory checkers is bounded-
ness. Boundedness is a property which helps define whether or not a pointer references memory
within the bounds of a specified chunk, or class of chunks, of memory. The technique of model-
ing object ownership [Weiss et al. 2019] places annotations governing boundedness into code on
a per-variable (per memory chunk) basis. This high level of per-chunk specificity achieves local
integrity at the cost of global safety checking (in a memory manager).

The Memcheck [Nethercote and Seward 2007] tool validates boundedness by partitioning ad-
dresses into unallocated and allocated4 classes (of chunks of memory). This per-class level of speci-
ficity achieves global integrity, such as an absence of certain use-after-free errors. However, low
per-chunk specificity rules out the detection of unspecified boundedness properties.

8 SCOPE, LIMITATIONS, & FUTUREWORK
Threats to Validity. Permchecker targets the debugging and diagnosis of the most difficult to di-
agnose bugs in a memory manager. While we discussed limitations to Permchecker’s ability to
diagnose value and logic bugs, those bugs remain detectable when they manifest as corruption.
Bugs which do not do so, or cannot be reproduced in the first place, go undetected.

Permchecker’s dynamic instrumentation, in particular, can perturb a runtime system such that
JIT compilation performance statistics, thread-scheduling, and the timing of garbage collections
prevent a rare bug from manifesting. As a result, there exist memory corruption bugs which Perm-
checker will never be able to observe.This is especially problematic because the domain of memory
manager implementations fall squarely into the class of programs which are highly sensitive to
timing considerations. In this regard, typestate checking of memory managers will greatly benefit
from the development of zero-overhead dedicated hardware to support live debugging.

Overhead. Permchecker’s dynamic instrumentor incurs a 10𝑥 to 50𝑥 slowdown in the tests of bug
templates listed in Section 6.2. This observed slowdown primarily owes itself to the instrumenta-
tion of each and every memory access by the VM: stack, Java heap, and C++ metadata alike. At
eachmemory access, themost common fast path of the shadow-memory implementation performs
two or three additional memory accesses. This behavior leaves substantial room for improvement,
either in smarter data structures or, optimally, hardware support similar in nature to page tables.

Thread Safety.Thread safety in the Java Native Interface (JNI / FFI), JIT compiler, and mutator slow
paths of Hotspot are entirely handled by existing VM code. Thus the only place in the toolchain
4And initialization status.
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where thread-safety became a non-trivial concern was in the implementation of shadow memory.
As such we implemented shadow memory as a lock-free tree-like map data structure in which
map updates and map allocations are atomic. In the presence of a data race involving an update
and a read access to the typestate of the same memory location, the shadow memory provides no
guarantee as to which typestate the read access observes: the old one or the new one.

First-Order Permissions. Permchecker is limited in scope to checking access permissions over a
fixed set of uniquely identifiable typestates. This scope limits our ability to check the validity of
broader algorithmic contracts or predicates. For example, this predicate: “the second write to some
Field at address 𝛼 should be preceded by memory of typestate MarkWord containing the value 0b00”.
Such a check would require both a mechanism by which to communicate the desirable property
to the dynamic instrumentor, as well as efficient algorithms and data structures to track necessary
information and verify validity.

Other debugging tools, notably GDB, supports features like conditional watchpoints and step-
wise debugging. These features allow a developer to know when the program accesses a particular
memory address, and to inspect subsequent instructions. Similarly, there is value in knowingwhen
the memory manager accesses a particular typestate of memory. In this work we focused on build-
ing a toolchain to diagnose reproducible errors, but a natural future extension could involve more
traditional debugging features capable of inspecting typestate at run time.
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